Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Cell Genom ; 4(5): 100550, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38697125

RESUMO

To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inibidores de Poli(ADP-Ribose) Polimerases , Reparo de DNA por Recombinação , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Reparo de DNA por Recombinação/efeitos dos fármacos , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Masculino , Camundongos , Animais , Feminino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Predisposição Genética para Doença
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731844

RESUMO

More than 20% of metastatic prostate cancer carries genomic defects involving DNA damage repair pathways, mainly in homologous recombination repair-related genes. The recent approval of olaparib has paved the way to precision medicine for the treatment of metastatic prostate cancer with PARP inhibitors in this subset of patients, especially in the case of BRCA1 or BRCA2 pathogenic/likely pathogenic variants. In face of this new therapeutic opportunity, many issues remain unsolved. This narrative review aims to describe the relationship between homologous recombination repair deficiency and prostate cancer, the techniques used to determine homologous recombination repair status in prostate cancer, the crosstalk between homologous recombination repair and the androgen receptor pathway, the current evidence on PARP inhibitors activity in metastatic prostate cancer also in homologous recombination repair-proficient tumors, as well as emerging mechanisms of resistance to PARP inhibitors. The possibility of combination therapies including a PARP inhibitor is an attractive option, and more robust data are awaited from ongoing phase II and phase III trials outlined in this manuscript.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias da Próstata , Reparo de DNA por Recombinação , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteína BRCA2/genética , Proteína BRCA2/deficiência , Metástase Neoplásica , Proteína BRCA1/genética , Proteína BRCA1/deficiência , Ftalazinas/uso terapêutico , Ftalazinas/farmacologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Piperazinas
3.
Front Pharmacol ; 15: 1362301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746012

RESUMO

Background and Objective: Oxidative stress is an important pathological process in ischemic stroke (IS). Apigenin (APG) is a natural product with favorable antioxidative effects, and some studies have already demonstrated the antioxidative mechanism of APG in the treatment of IS. However, the mechanism of APG on DNA damage and repair after IS is not clear. The aim of this study was to investigate the mechanism of APG on DNA repair after IS. Methods: Male Sprague-Dawley rats were used to establish a model of permanent middle cerebral artery occlusion (pMCAO) on one side, and were pre-treated with gavage of APG (30, 60, or 120 mg/kg) for 7 days. One day after pMCAO, the brain tissues were collected. Cerebral infarct volume, brain water content, HE staining and antioxidant index were analyzed to evaluated the brain damage. Molecular Docking, molecular dynamics (MD) simulation, immunohistochemistry, and Western blot were used to explore the potential proteins related to DNA damage repair. Results: APG has a low binding score with DNA repair-related proteins. APG treatment has improved the volume of cerebral infarction and neurological deficits, reduced brain edema, and decreased parthanatos and apoptosis by inhibiting PARP1/AIF pathway. In addition, APG improved the antioxidative capacity through reducing reactive oxygen species and malondialdehyde, and increasing glutathione and superoxide dismutase. Also, APG has reduced DNA damage- and cell death-related proteins such as PARP1, γH2A.X, 53BP1, AIF, cleaved caspase3, Cytochrome c, and increased DNA repair by BRCA1 and RAD51 through homologous recombination repair, and reduced non-homologous end link repair by KU70. Conclusion: APG can improve nerve damage after IS, and these protective effects were realized by reducing oxidative stress and DNA damage, and improving DNA repair.

4.
J Exp Clin Cancer Res ; 43(1): 122, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654320

RESUMO

BACKGROUND: Radiation therapy stands to be one of the primary approaches in the clinical treatment of malignant tumors. Nasopharyngeal Carcinoma, a malignancy predominantly treated with radiation therapy, provides an invaluable model for investigating the mechanisms underlying radiation therapy resistance in cancer. While some reports have suggested the involvement of circRNAs in modulating resistance to radiation therapy, the underpinning mechanisms remain unclear. METHODS: RT-qPCR and in situ hybridization were used to detect the expression level of circCDYL2 in nasopharyngeal carcinoma tissue samples. The effect of circCDYL2 on radiotherapy resistance in nasopharyngeal carcinoma was demonstrated by in vitro and in vivo functional experiments. The HR-GFP reporter assay determined that circCDYL2 affected homologous recombination repair. RNA pull down, RIP, western blotting, IF, and polysome profiling assays were used to verify that circCDYL2 promoted the translation of RAD51 by binding to EIF3D protein. RESULTS: We have identified circCDYL2 as highly expressed in nasopharyngeal carcinoma tissues, and it was closely associated with poor prognosis. In vitro and in vivo experiments demonstrate that circCDYL2 plays a pivotal role in promoting radiotherapy resistance in nasopharyngeal carcinoma. Our investigation unveils a specific mechanism by which circCDYL2, acting as a scaffold molecule, recruits eukaryotic translation initiation factor 3 subunit D protein (EIF3D) to the 5'-UTR of RAD51 mRNA, a crucial component of the DNA damage repair pathway to facilitate the initiation of RAD51 translation and enhance homologous recombination repair capability, and ultimately leads to radiotherapy resistance in nasopharyngeal carcinoma. CONCLUSIONS: These findings establish a novel role of the circCDYL2/EIF3D/RAD51 axis in nasopharyngeal carcinoma radiotherapy resistance. Our work not only sheds light on the underlying molecular mechanism but also highlights the potential of circCDYL2 as a therapeutic sensitization target and a promising prognostic molecular marker for nasopharyngeal carcinoma.


Assuntos
Carcinoma Nasofaríngeo , Rad51 Recombinase , Tolerância a Radiação , Reparo de DNA por Recombinação , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Camundongos , Animais , Tolerância a Radiação/genética , RNA Circular/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Linhagem Celular Tumoral , Feminino , Masculino , Prognóstico , Camundongos Nus
5.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675528

RESUMO

Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Glioblastoma , S-Adenosilmetionina , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , S-Adenosilmetionina/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Aurora Quinase B/metabolismo , Aurora Quinase B/antagonistas & inibidores , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Rad51 Recombinase/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Mitose/efeitos dos fármacos
6.
Biol Trace Elem Res ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499919

RESUMO

Hexavalent chromium [Cr(VI)] is a known lung carcinogen and a driving mechanism in human lung cells for Cr(VI)-induced lung cancer is chromosome instability, caused by prolonged Cr(VI) exposure inducing DNA double-strand breaks, while simultaneously inhibiting the repair of these breaks. In North Atlantic right whales, Cr(VI) induces breaks but does not inhibit repair. It is unclear if this repair inhibition is specific to human lung cells or occurs in other species, as it has only been considered in humans and North Atlantic right whales. We evaluated these outcomes in rodent cells, as rodents are an experimental model for metal-induced lung carcinogenesis. We used a guinea pig lung fibroblast cell line, JH4 Clone 1, and rat lung fibroblasts. Cells were exposed to two different particulate Cr(VI) compounds, ranging from 0 to 0.5 ug/cm2, for 24 or 120 h and assessed for cytotoxicity, DNA double-strand breaks, and DNA double-strand break repair. Both particulate Cr(VI) compounds induced a concentration-dependent increase in cytotoxicity and DNA double-strand breaks after acute and prolonged exposures. Notably, while the repair of Cr(VI)-induced DNA double-strand breaks increased after acute exposure, the repair of these breaks was inhibited after prolonged exposure. These results are consistent with outcomes in human lung cells indicating rodent cells respond like human cells, while whale cells have a markedly different response.

7.
Cell Commun Signal ; 22(1): 194, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539211

RESUMO

BACKGROUND: Chemoresistance is associated with tumor relapse and unfavorable prognosis. Multiple mechanisms underlying chemoresistance have been elucidated, including stemness and DNA damage repair. Here, the involvement of the WNT receptor, FZD5, in ovarian cancer (OC) chemoresistance was investigated. METHODS: OC cells were analyzed using in vitro techniques including cell transfection, western blot, immunofluorescence and phalloidin staining, CCK8 assay, colony formation, flowcytometry, real-time PCR, and tumorisphere formation. Pearson correlation analysis of the expression levels of relevant genes was conducted using data from the CCLE database. Further, the behavior of OC cells in vivo was assessed by generation of a mouse xenograft model. RESULTS: Functional studies in OC cells showed that FZD5 contributes to epithelial phenotype maintenance, growth, stemness, HR repair, and chemoresistance. Mechanistically, FZD5 modulates the expression of ALDH1A1, a functional marker for cancer stem-like cells, in a ß-catenin-dependent manner. ALDH1A1 activates Akt signaling, further upregulating RAD51 and BRCA1, to promote HR repair. CONCLUSIONS: Taken together, these findings demonstrate that the FZD5-ALDH1A1-Akt pathway is responsible for OC cell survival, and targeting this pathway can sensitize OC cells to DNA damage-based therapy.


Assuntos
Aldeído Desidrogenase , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Aldeído Desidrogenase/genética , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo
8.
Ther Adv Urol ; 16: 17562872241229876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425504

RESUMO

Introduction: DNA damage repair genes are altered in 20-35% of metastatic castration-resistant prostate cancer (mCRPC). Poly-ADP (Adénosine Diphosphate)-ribose polymerase inhibitors (PARPi) showed significant activity for these selected tumors, especially with homologous recombination repair (HRR) deficiency. These alterations could also predict platinum sensitivity. Although carboplatin was inconclusive in unselected mCRPC, the literature suggests an anti-tumoral activity in mCRPC with HHR gene alterations. We aimed to assess the efficacy of carboplatin monotherapy in mCRPC patients with HRR deficiency. Methods: This prospective multicenter single-arm two-stage phase II addressed mCRPC men with HRR somatic and/or germline alterations, pretreated with ⩾2 taxane chemotherapy regimens and one androgen receptor pathway inhibitor. Prior PARPi treatment was allowed. Enrolled patients received intravenous carboplatin (AUC5) every 21 days for 6-9 cycles. The primary endpoint was the best response rate according to adapted PCWG3 guidelines: radiological response (RECIST 1.1 criteria) and/or biological response [⩾50% prostate-specific antigen (PSA) decline]. Results: A total of 15 out of 16 enrolled patients started carboplatin treatment. Genomic alterations were identified for BRCA2 (n = 5), CDK12 (n = 3), ATM (n = 3) CHEK2 (n = 2), CHEK1 (n = 1), and BRCA1 (n = 1) genes. Objective response (partial biological response + stable radiological response) was achieved in one patient (6.7%), carrying a BRCA2 mutation and not pre-treated with PARPi; stable disease was observed for five patients (33.5%). Among seven patients (46.7%) with previous PARPi treatment, four patients (57.1%) had a stable disease. The median progression-free and overall survivals were 1.9 [95% confidence interval (95% CI), 1.8-9.5] and 8.6 months (95% CI, 4.3-19.5), respectively. The most common severe (grade 3-4) treatment-related toxicities were thrombocytopenia (66.7%), anemia (66.7%), and nausea (60%). Overall, 8 (53.3%) patients experienced a severe hematological event. Conclusion: The study was prematurely stopped as pre-planned considering the limited activity of carboplatin monotherapy in heavily pre-treated, HHR-deficient mCRPC patients. Larger experience is needed in mCRPC with BRCA alterations. Trial registration: NCT03652493, EudraCT ID number 2017-004764-35.

9.
Eur Urol Oncol ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458891

RESUMO

BACKGROUND AND OBJECTIVE: Olaparib + abiraterone has a combined antitumor effect in metastatic castration-resistant prostate cancer (mCRPC), but the efficacy of this combination in patients with DNA damage repair (DDR)-deficient mCRPC progressing after abiraterone is unknown. Our aim was to compare the efficacy of olaparib + abiraterone versus olaparib monotherapy for patients with DDR-deficient mCRPC progressing after abiraterone. METHODS: The study included 86 consecutive patients with DDR-deficient mCRPC progressing after abiraterone: 34 received olaparib + abiraterone, and 52 received olaparib monotherapy. DDR-deficient status was defined as the presence of a DDR gene with a pathogenic or likely pathogenic variant (DDR-PV), or with a variant of unknown significance (DDR-VUS). We assessed progression-free survival (PFS) and overall survival (OS) using the Kaplan-Meier method. Potential factors influencing PFS and OS were compared between the treatment arms using Cox proportional-hazards models. The prostate-specific antigen (PSA) response, the treatment effect across subgroups, and adverse events (AEs) were also evaluated. KEY FINDINGS AND LIMITATIONS: Median follow-up was 9 mo. In the overall cohort, median PFS and OS were significantly longer in the combination arm than in the monotherapy arm (PFS: 6.0 vs 3.0 mo; hazard ratio [HR] 0.41, 95% confidence interval [CI] 0.25-0.67; p < 0.01; OS: 25.0 vs 12.0 mo; HR 0.30, 95% CI 0.14-0.67; p < 0.01). PSA responses were significantly higher following combination therapy versus monotherapy. Combination therapy had significantly better efficacy in the DDR-PV and DDR-VUS subgroups, and was an independent predictor of better PFS and OS. AE rates were acceptable. The retrospective nature, small sample size, and short follow-up are limitations. CONCLUSIONS: Olaparib + abiraterone resulted in better PFS and OS than olaparib alone for patients with DDR-deficient mCRPC progressing after abiraterone. These results need to be confirmed by a large-scale prospective randomized controlled trial. PATIENT SUMMARY: Our study shows that the drug combination of olaparib plus abiraterone improved survival over abiraterone alone for patients who have mutations in genes affecting DNA repair and metastatic prostate cancer resistant to hormone therapy. The results provide evidence of a synergistic effect of the two drugs in these patients.

10.
Clin Genitourin Cancer ; : 102052, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38461085

RESUMO

BACKGROUND: An estimated 20% to 30% of men with advanced prostate cancer carry a mutation in DNA damage repair genes, of which half are estimated to be germline. Eligibility criteria for germline genetic testing expanded significantly for Ontario patients in May 2021 and many centers adopted a "mainstream" model, defined as oncologist-initiated genetic testing. METHODS: We conducted a retrospective chart review to report on the first-year mainstream experience of a large tertiary oncologic center, the Sunnybrook Odette Cancer Centre. All patients who underwent mainstream at the discretion of their treating physician were included. A subset underwent somatic profiling as part of clinical trial screening. Descriptive statistics were used to report baseline clinicopathologic characteristics and treatments received. RESULTS: Between May 1, 2021, and May 30, 2022, 174 patients with prostate cancer underwent mainstream germline genetic testing with a 19-gene panel. Median age was 75 (IQR 68-80), and 82% of patients were diagnosed with either de novo metastatic or high-risk localized prostate adenocarcinoma. Fourteen patients (8%; 95% CI 4%-12%) were found to have a deleterious germline mutation, including pathogenic or likely pathogenic variants in BRCA1/2, ATM, CHEK2, PMS2, RAD51C, HOXB13, and BRIP1. Forty-nine patients (28%; 95% CI 21%-35%) were found to have a variant of uncertain significance. Thirty-four patients also had next-generation sequencing (NGS) of their somatic tissue. Among this subset, 8 of 34 (23%) had an alteration in homologous recombination repair (HRR) genes. Of the 14 patients with a germline mutation, none had a prior personal history of malignancy and 6 (43%) did not have any first- or second-degree relatives with history of prostate, pancreatic, breast, or ovarian cancer. CONCLUSION: We report on the real-world characteristics of prostate cancer patients who underwent mainstream germline genetic testing. Personal history and family history of cancer cannot reliably stratify patients for the presence of pathogenic germline variants.

11.
J Appl Genet ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478326

RESUMO

Globally, breast cancer (BC) is the leading cause of female death and morbidity. Homologous recombination repair (HRR) is critical in BC. However, the prognostic role and immunotherapy response of HRR in BC remains to be clarified. Firstly, we identified HRR types in BC samples from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset (GSE42568) based on 65 HRR genes (HRRGs). A differentially expressed gene (DEG) list for different HRR types was generated. Then, the influences of gene sets composed of these DEGs on biological pathways and BC prognosis were explored. Next, we identified gene clusters based on gene sets composed of DEGs. Genes associated with prognosis for DEGs were identified using univariate Cox regression. Finally, the HRR score was constructed based on genes associated with prognosis. We analyzed how HRR score correlates with tumor mutation burden (TMB), immune cell infiltration (ICI), and immunotherapy response. Three HRR clusters were discovered. HRR subtype A demonstrated decreased infiltration and a high number of immunosuppressive cells with a poor prognosis. DEGs among various HRR types were predominantly enriched in cell cycle and genomic stability-related pathways. The prognostic model based on sixteen DEGs accurately predicted BC prognosis. The HRRGs were differentially expressed in three DEG clusters. TMB, ICI, and immunotherapy responses differed significantly between the high and low HRR groups (HSG, LSG). The HSG was distinguished by a high degree of ICI and low TMB. LSG had a better response to anti-PD-1 or anti-PD-1 and anti-CTLA4 combination therapy. This work revealed that HRR patterns would contribute to predicting prognosis and immunotherapy response in BC, which may benefit patients.

12.
Cell Signal ; 118: 111151, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522807

RESUMO

Chemoresistance poses a significant obstacle to the treatment of breast cancer patients. The increased capacity of DNA damage repair is one of the mechanisms underlying chemoresistance. Bioinformatic analyses showed that E2F8 was associated with cell cycle progression and homologous recombination (HR) repair of DNA double-strand breaks (DSBs) in breast cancer. E2F8 knockdown suppressed cell growth and attenuated HR repair. Accordingly, E2F8 knockdown sensitized cancer cells to Adriamycin and Cisplatin. Centromere protein L (CENPL) is a transcriptional target by E2F8. CENPL overexpression in E2F8-knockdowned cells recovered at least in part the effect of E2F8 on DNA damage repair and chemotherapy sensitivity. Consistently, CENPL knockdown impaired DNA damage repair and sensitized cancer cells to DNA-damaging drugs. These findings demonstrate that targeting E2F8-CENPL pathway is a potential approach to overcoming chemoresistance.


Assuntos
Neoplasias da Mama , Reparo de DNA por Recombinação , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Reparo do DNA , DNA , Proteínas Repressoras/genética , Proteínas Cromossômicas não Histona , Proteínas de Ciclo Celular/genética
13.
Toxicol Sci ; 199(1): 49-62, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38539048

RESUMO

Chromosome instability, a hallmark of lung cancer, is a driving mechanism for hexavalent chromium [Cr(VI)] carcinogenesis in humans. Cr(VI) induces structural and numerical chromosome instability in human lung cells by inducing DNA double-strand breaks and inhibiting homologous recombination repair and causing spindle assembly checkpoint (SAC) bypass and centrosome amplification. Great whales are long-lived species with long-term exposures to Cr(VI) and accumulate Cr in their tissue, but exhibit a low incidence of cancer. Data show Cr(VI) induces fewer chromosome aberrations in whale cells after acute Cr(VI) exposure suggesting whale cells can evade Cr(VI)-induced chromosome instability. However, it is unknown if whales can evade Cr(VI)-induced chromosome instability. Thus, we tested the hypothesis that whale cells resist Cr(VI)-induced loss of homologous recombination repair activity and increased SAC bypass and centrosome amplification. We found Cr(VI) induces similar amounts of DNA double-strand breaks after acute (24 h) and prolonged (120 h) exposures in whale lung cells, but does not inhibit homologous recombination repair, SAC bypass, or centrosome amplification, and does not induce chromosome instability. These data indicate whale lung cells resist Cr(VI)-induced chromosome instability, the major driver for Cr(VI) carcinogenesis at a cellular level, consistent with observations that whales are resistant to cancer.


Assuntos
Centrossomo , Cromo , Instabilidade Cromossômica , Quebras de DNA de Cadeia Dupla , Animais , Cromo/toxicidade , Instabilidade Cromossômica/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Centrossomo/efeitos dos fármacos , Centrossomo/metabolismo , Baleias/genética
14.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338953

RESUMO

Maintaining genomic stability and properly repairing damaged DNA is essential to staying healthy and preserving cellular homeostasis. The five major pathways involved in repairing eukaryotic DNA include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), and homologous recombination (HR). When these pathways do not properly repair damaged DNA, genomic stability is compromised and can contribute to diseases such as cancer. It is essential that the causes of DNA damage and the consequent repair pathways are fully understood, yet the initial recruitment and regulation of DNA damage response proteins remains unclear. In this review, the causes of DNA damage, the various mechanisms of DNA damage repair, and the current research regarding the early steps of each major pathway were investigated.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Reparo do DNA por Junção de Extremidades , Instabilidade Genômica , DNA
15.
Expert Rev Gastroenterol Hepatol ; 18(1-3): 55-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415709

RESUMO

INTRODUCTION: Pancreas ductal adenocarcinoma (PDAC) is a frequently lethal malignancy that poses unique therapeutic challenges. The current mainstay of therapy for metastatic PDAC (mPDAC) is cytotoxic chemotherapy. NALIRIFOX (liposomal irinotecan, fluorouracil, leucovorin, oxaliplatin) is an emerging standard of care in the metastatic setting. An evolving understanding of PDAC pathogenesis is driving a shift toward targeted therapy. Olaparib, a poly-ADP-ribose polymerase (PARP) inhibitor, has regulatory approval for maintenance therapy in BRCA-mutated mPDAC along with other targeted agents receiving disease-agnostic approvals including for PDAC with rare fusions and mismatch repair deficiency. Ongoing research continues to identify and evaluate an expanding array of targeted therapies for PDAC. AREAS COVERED: This review provides a brief overview of standard therapies for PDAC and an emphasis on current and emerging targeted therapies. EXPERT OPINION: There is notable potential for targeted therapies for KRAS-mutated PDAC with opportunity for meaningful benefit for a sizable portion of patients with this disease. Further, emerging approaches are focused on novel immune, tumor microenvironment, and synthetic lethality strategies.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Antineoplásicos/efeitos adversos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Fluoruracila/uso terapêutico , Oxaliplatina , Microambiente Tumoral
16.
Pathol Int ; 74(3): 103-118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38411330

RESUMO

Perturbation of genes is important for somatic hypermutation to increase antibody affinity during B-cell immunity; however, it may also promote carcinogenesis. Previous studies have revealed that transcription is an important process that can induce DNA damage and genomic instability. Transciption-export-2 (TREX-2) complex, which regulates messenger RNA (mRNA) nuclear export, has been studied in the budding yeast Saccharomyces cerevisiae; however, recent studies have started investigating the molecular function of the mammalian TREX-2 complex. The central molecule in the TREX-2 complex, that is, germinal center-associated nuclear protein (GANP), is closely associated with antibody affinity maturation as well as cancer etiology. In this review, we focus on carcinogenesis, lymphomagenesis, and teratomagenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. We review the basic machinery of mRNA nuclear export and transcription-coupled DNA damage. We then briefly describe the immunological relationship between GANP and the affinity maturation of antibodies. Finally, we illustrate that the aberrant expression of the components of the TREX-2 complex, especially GANP, is associated with the etiology of various solid tumors, lymphomas, and testicular teratoma. These components serve as reliable predictors of cancer prognosis and response to chemotherapy.


Assuntos
Núcleo Celular , Neoplasias , Animais , Humanos , RNA Mensageiro/genética , Dano ao DNA , Carcinogênese/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
17.
J Cancer ; 15(5): 1397-1413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356722

RESUMO

Objective: Patients initially sensitive to PARPi (PARP inhibitor) regain resistance because of homologous recombination (HR) restoration, although PARPi has a synthetic lethality effect on serous ovarian cancer cells with BRCA1/2 mutations. This study aimed to investigate the role of NEAT1 in HR function and whether targeting NEAT1 in serous ovarian cancer cells could increase PARPi sensitivity. Methods: Ovarian cancer patients' clinical information and the expression of NEAT1 were collected from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Ovarian cancer (OC) cells HeyA8 and SKOV3 were silenced by transfecting NEAT1 ASO. QRT-PCR confirmed the mRNA expression of RAD51, FOXM1, NEAT1_1 and NEAT1_2. We assessed the expression of RAD51, FOXM1, and γ-H2AX by Western blotting and Immunofluorescence. Comet Assays were used to detect DNA double-strand damage levels. In OC cells transfected with NEAT1 ASO or co-transfected overexpression RAD51/empty vector and si-NEAT1/si-ctrl, the sensitivity to Olaparib was determined using CCK8 assay. The Kaplan-Meier survival curves assessed the prognostic and predictive roles of NEAT1 in OC. Results: NEAT1 was an independent prognostic marker of ovarian cancer. NEAT1 knockdown reduced the expression of NEAT1_1, NEAT1_2, RAD51, and FOXM1 and increased the expression of γ-H2AX. In addition, Olaparib increased the expression of RAD51, representing HR repair efficiency, which was inhibited by NEAT1 knockdown. Moreover, the knockdown of NEAT1 increased the DNA damage caused by Olaparib, demonstrated by increased nuclear γ-H2AX foci, DNA in the tail, and expression of γ-H2AX. NEAT1 knockdown sensitized ovarian cancer cells to Olaparib by targeting RAD51-HR. NEAT1 expression could predict response to chemotherapy for ovarian cancer. Conclusions: NEAT1 knockdown inhibited HR capacity and increased DNA damage caused by Olaparib in serous ovarian cancer cells, making them more sensitive to Olaparib and providing a crucial therapeutic advantage of increasing sensitivity to Olaparib.

18.
J Biol Chem ; 300(3): 107115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403248

RESUMO

RAD51-associated protein 1 (RAD51AP1) is known to promote homologous recombination (HR) repair. However, the precise mechanism of RAD51AP1 in HR repair is unclear. Here, we identify that RAD51AP1 associates with pre-rRNA. Both the N terminus and C terminus of RAD51AP1 recognize pre-rRNA. Pre-rRNA not only colocalizes with RAD51AP1 at double-strand breaks (DSBs) but also facilitates the recruitment of RAD51AP1 to DSBs. Consistently, transient inhibition of pre-rRNA synthesis by RNA polymerase I inhibitor suppresses the recruitment of RAD51AP1 as well as HR repair. Moreover, RAD51AP1 forms liquid-liquid phase separation in the presence of pre-rRNA in vitro, which may be the molecular mechanism of RAD51AP1 foci formation. Taken together, our results demonstrate that pre-rRNA mediates the relocation of RAD51AP1 to DSBs for HR repair.


Assuntos
Proteínas de Ligação a DNA , Recombinação Homóloga , Proteínas de Ligação a RNA , DNA , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Precursores de RNA , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
19.
Cancer Med ; 13(3): e6729, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308422

RESUMO

BACKGROUND: Approximately 3/4 of ovarian cancers are diagnosed in advanced stages, with the high-grade epithelial ovarian carcinoma (EOC) accounting for 90% of the cases. EOC present high genomic instability and somatic loss-of-function variants in genes associated with homologous recombination mutational repair pathway (HR), such as BRCA1 and BRCA2, and in TP53. The identification of germline variants in HR genes in EOC is relevant for treatment of platinum resistant tumors and relapsed tumors with therapies based in synthetic lethality such as PARP inhibitors. Patients with somatic variants in HR genes may also benefit from these therapies. In this work was analyzed the frequency of somatic variants in BRCA1, BRCA2, and TP53 in an EOC cohort of Brazilian patients, estimating the proportion of variants in tumoral tissue and their association with progression-free survival and overall survival. METHODS: The study was conducted with paired blood/tumor samples from 56 patients. Germline and tumoral sequences of BRCA1, BRCA2, and TP53 were obtained by massive parallel sequencing. The HaplotypeCaller method was used for calling germline variants, and somatic variants were called with Mutect2. RESULTS: A total of 26 germline variants were found, and seven patients presented germline pathogenic or likely pathogenic variants in BRCA1 or BRCA2. The analysis of tumoral tissue identified 52 somatic variants in 41 patients, being 43 somatic variants affecting or likely affecting protein functionality. Survival analyses showed that tumor staging was associated with overall survival (OS), while the presence of somatic mutation in TP53 was not associated with OS or progression-free survival. CONCLUSION: Frequency of pathogenic or likely pathogenic germline variants in BRCA1 and BRCA2 (12.5%) was lower in comparison with other studies. TP53 was the most altered gene in tumors, with 62.5% presenting likely non-functional or non-functional somatic variants, while eight 14.2% presented likely non-functional or non-functional somatic variants in BRCA1 or BRCA2.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/genética , Brasil/epidemiologia , Neoplasias Ovarianas/genética , Reparo do DNA , Células Germinativas , Proteína Supressora de Tumor p53/genética , Proteína BRCA1/genética , Proteína BRCA2/genética
20.
J Ovarian Res ; 17(1): 53, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409030

RESUMO

BACKGROUND: Ovarian cancer is the eighth leading cause of cancer-related death among women, characterized by late diagnosis and a high relapse rate. In randomized controlled trials, we aimed to evaluate the efficacy and safety of PARP inhibitors (PARPi) in treating advanced ovarian cancer. METHODS: This review was registered on PROSPERO (CRD42021283150), included all phase II and phase III randomized controlled trials (RCTs) assessing the effect of PARPi on ovarian cancer until the 13th of April, 2022. The main outcomes were progression- free survival (PFS), overall survival (OS), and adverse events (AEs). Pooled hazard ratios (HRs), and risk ratios (RRs) were calculated with 95% confidence intervals (95% CI). The random-effects model was applied in all analyses. RESULTS: In the meta-analysis, 16 eligible RCTs were included, with a total of 5,815 patients. In recurrent ovarian cancer, PARPi maintenance therapy showed a significant PFS benefit over placebo in the total population (HR 0.34, CI 0.29-0.40), BRCA mutant (HR 0.24, CI 0.18-0.31), germline BRCA mutant (HR 0.23, CI 0.18-0.30), and BRCA wild-type cases (HR 0.50, CI 0.39-0.65). PARPi monotherapy also improved PFS (HR 0.62, CI 0.51-0.76) compared with chemotherapy in BRCAm patients with recurrent ovarian cancer. The use of PARPi maintenance therapy resulted in an improvement in PFS over placebo in newly-diagnosed cancers in the overall population (HR 0.46, CI 0.30-0.71) and the BRCAm population (HR 0.36, CI 0.29-0.44). Although the risk of severe AEs was increased by PARPi therapy compared to placebo in most settings investigated, these side effects were controllable with dose modification, and treatment discontinuation was required in the minority of cases. CONCLUSIONS: PARPis are an effective therapeutic option for newly-diagnosed and recurrent ovarian cancer. Despite a minor increase in the frequency of serious adverse effects, they are generally well tolerated.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/induzido quimicamente , Carcinoma Epitelial do Ovário/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...